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Abstract

This report describes progress in development uf an integrated mobile robot system at the Carnegie
Mellon Robotics Institute from July 1987 to June 1988. This research was sponsored by the Defense
Advanced Research Projects Agency and monitored by the US Army Engineer Topographic Laboratories
under contract DACA76-86-C-0019.

Our program includes a broad agenda of research in the development of mobile robot vehicles,
focused on the NAVLABcomputer-controlled van. In the year covered by this report, we addressed major
issues in both hardware and software for autonomous mobile robots:

* Evolution of the NAMLAB Vehicle. We built the NAVLAB mobile robot vehicle in our
previous work under this contract, by outfitting a commercial truck chassis with computer-
controlled drive and steering controls and a set of on-board computer workstations. The
NAVLAB serves as a mobile navigation laboratory that allows researchers to interact
intensively with the system during testing and execution. This year has seen a continued
evolution and improvement of the NAVLAB mechanism, sensors, controller, and V:t'al
Vehicle interface to higher-level planning and percepticn software.

*Evolution of the CODGER Blackboard. Last year, as part of this research program, we
designed and implemented the CODGER blackboard system for robot perception and
reasoning on a distributed collection of processors. This year, in response to our experience
in using CODGER for mobile robot control, we have upgraded it to deal with geometric
modeis and uncertainty in perception and map data.

*Experiments With the Driving Pipeline. To control the NAVLAB and Terregator mobile
robot vehicles, we developed the Driving Pipeline arcn tecture last year for coordinating road
following, obstacle avoidance, and vehicle motion control. In our ongoing research, we have
performed numerous experiments with this system that demonstrate its value.

This hardware and software is the basis for the New Generation System (NGS) for robot vision and
navigation, which integrates many independent technologies to produce an integrated mobile robot
system.
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Section I

Introduction

Introduction and Overview

This report reviews progress at Carnegie Mellon from July 1, 1987, to June 30, 1988, on research
sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5682, and monitored
by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0019, titled
"Development of an Integrated Mobile Robot System." This report consists of an introduction and
overview, and detailed reports on specific areas of research.

In our previous work under this contract, we developed a computer-controlled mobile robot, the
NAVLAB, 3s a tool and testbed for research in robot navigation, and we developed a software framework

for integrating vision, planning, and control modules into a single working system. The modules
themselves are under developmant through a related research effort in "Road Following" which is also
sponsored by DARPA. The total system has been demonstrated in outdoor navigation runs vithout human
intervention, on a road in Schenley Park, Pittsburgh, near the Carnegie Mellon campus.

This year, we have made progress in several areas of the NAVLAB hardware and software:

* Evolution of the NAVLAB Vehicle. We built the NAVLAB mobile robot vehicle in our
previous work under this contract, by outfitting a commercial truck chassis with computer-
controlled drive and steering controls and a set of on-board computer workstations. This
year has seen a continued evolution and improvement of the NAVLAB mechanism, sensors,
controllp.r, and Virtual Vehicle interface to higher-level planning and perception software.

-,Evolution of the CODGER Blackboard. Last year, as part of this research program, we
designed and implemented the CODGER blackboard system for robot perception and
reasoning on a distributed collection of processors. This year, in response to our experience
in using CODGER for mobile robot control, we have upgraded it to deal with geometric
models and uncertainty in perception and map data.

Experiments With the Driving Pipeline. To control the NAVLAB and Terregator mobile
robot vehicles, we developed the Driving Pipeline architecture last year for coordinating road
following, obstacle avoidance, and vehicle motion control. In our ongoing research, we have
performed nLmerous experiments with this system that demonstrate its value.

Summary: Evolution of the NAVLAB Vehicle.

In this year, Robotics Institute researchers logged over 900 hours of mobile robot experiments abord
the NAVLAB. Significant maintenance efforts have been carried out to support this demanding schedule.
In addition, improvements have been made in several aspects of the NAVLAB itself, including the
NAVLAB hardware, new sensors, and improvement of the Virtual Vehicle Interface.

Ongoing development of the hardware has been aimed at improvement of the power generation,
reliability, and driveability of the NAVLAB. One problem was the falloff of power during uphill runs. This
was solved by replacing the original throttle with an analog engine speed control system to provide
constant engine speed and thus constant power. We also re-configured the on-board computers to
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facilitate support of the WARP supercomputer on the NAVLAB. The motion control boards were
redesigned to provide smoother driving. All of these and other upgrades of the vehicle are placing an
ever-increasing load on the air conditioning and weight limits of the vehicle.

We have also installed and integrated several new sensors on the NAVLAB. Two of these, a Global
Positioning System satellite receiver and an inertial navigation unit, are joined together into a subsystem
for vehicle position determination. Another sensor is specialized for collision avoidance, a single-scan-
line (10) laser range scanner. This laser scanner allows us tc implement a rapid-response clearance
check for obstacles in the environment. This is necessary even with perfect 3D terrain and obstacle
sensing, because the control error in the vehicle can cause it to deviate from the planned path througn
the terrain and obstacles.

The Virtual Vehicle Interface was also improved this year. This interface is the command set through
which the high-level software for perception and planning can communicate with the vehicle cortrol
subsystem. Improvements to the Virtual Vehicle Interface include a new mode of operation that executes
commands immediately instead of queuing them in order of receipt, and providing more feedback to the
nigh-level software concerning vehicle status and the execution of commands Also, the control software
can now handle variable-length driving units, which was an important feature for conducting the Driving
Pipeline experiments described below.

This research is described in more detail in Section II: "Evolution of the NAVLAB Vehicle".

Summary: Evolution of the CODGER Mobile Robot Blackboard.

In the first year of this contract, the CODGER mobile robot biackboard was developed and used :o

control the NAVLAB. CODGER implements a distributed database with a central database manager
module, and features data values and operators to support geometric reasoning for robot navigation. In
,he last year, we have developed CODGER II, which is based on CODGER but includes new features to
address imr mrtant issues in mobile robot integration.

The first set of new features in CODGER II were added to suport map representation. A robot that s
navigating using a map needs to make many different Kinds of queries about the data, such as "what is
the next road segment?" and "are there any visible obstacles in this region?". While CODGER I had
racilities for geometric r,"rnresentation of polygons, it did not posess a mechanism for answering
topological questions about connectivity and adjacency. We ,zo:;mo2,pc9 ?D geometric
modeling capability and added it to CODGER for use in representing and utilizing map data

In a mobile robot vehicle, the geometric relationships between the vehicle and the world are constantly
changing. and the vehicle itself may have moving parts such as vehicle suspension and pan-tilt mounts
for sensors. The systems needs to be able to maintain both the current relationships and a complete
nistory of the geometric relationships among objects. To facilitate this, CODGER II introduces the

concept of frame generators that represent time-varying geometric transformations between objects. The
oblects themselves are organized into affixment groups of relatively stationary objects. Within an
affixment group, all geometric transforms are stationary; across affixment groups, the transforms vary
over time,

Representing map information is very important for vehicle navigation, but map data is not always
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complete and accurate. It ,e very important for the venicle to be able to update map information as it

makes new observations about the world. This requires that each observation about the world be
recorded, and be marked as an observation so that it can be used to incrementally revise the pre-stored
map nformation. Observations are a particular type of frame generator Whenever an observation is

made, the other frame generators are updat3d to resolve any inconsistency between the old and the new

data. This same approach is used to resolve multiple, possibiy inconsistent, sources of information about
vehicle position itself: this provides a capability for landmark navigation that integrates on-board motion

sensors with landmark recognition.

CODGER II will be a capaole tramework for continued experimentation in the integration of symbolic
anid quantitative map data with observations from a robot vehicle in the field. 1 n's research is describec
in more detail in Section III: "Evolution of the CODGER Blackboard"

Summary: Experiments With the Driving Pipeline.

Moo ie robot vehicles must control the execution of numerous perception and planning Drocesses :o

riavigate successfully in complex environments. In the past, most mobile robot systems .have -titzec
-stop-and-go" control scnemes that avoid addressing the driving control problem, or nave ised 'ixec
control schemes that do not allow for the changing environment and lield of view of the vehicle. Ths
report presents our architecture for mobile robot control called the "Driving Pipeine". that integrates

muitiple perception and planning processes and provides continuous motion with adaptive control. The

Driving Pipeline has been imp - ented and tested on numerous versions of two vehicles the Terregator
and the NAVLAB. It has proven to be a flexible and powerful mechanism for building integrated software
'or mooile rooot perception and planning.

The Driving Pipeline is based on the principle of dividing the navigation area into small (5-10m) pieces

cailed driving uni.. By dividing the ground into driving units, each unit can be processed separately Oy
tr'e varous sensors and planning systems on the vehicle.

The processing steps themselves include vision and range sensing, anal',z.s ;f the environment, and

trajectory planning. Each step must be executed in turn before the vehicle a.ctually traverses each driving

unit. Sin(e the. steps are sequential and the vehicle travels sequentially over the driving units, the steps

can be executed in paralle; on the successive driving units ahead of the vehicle. This arrangement

Drovides fast enough throughput to allow continuous motion of the robot vehicle.

The driving units are not always the same lengin. When the vctcle apprc"?- a curve or

intersection, the field of view of the sensors does not completely overlap the road. This reduces t:e
dlistance that the vehicle can look ahead; therefore, smaller driving units will be used in such places.
Since the vehicle travels each driving unit in approximately constant time, the rcsuit is that the vehicle
automatically and smoothly slows down when the vehicle turns.

When the vehicle has a map available in advance, the Driving Pipeline can operate as just described.

However, if there is no map, then the environmental analysis for one driving unit must be completed
before the next driving unit can begin to be processed This reduces the ability of the system to execute
multiple functions in parallel, and naturally results in a slower vehicle speed. Thus, the availability of a

map allows the vehicle to mere faster.
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This research is descriced beiow in Section IV "Exper ments With the Driving P'pere"

Summary: Ex,- .,nentatlon on the ALV

Our ex-erience at Carnegie Mellon includes both the integrated NAVLAB system (this contract) and
oasic -esearicn on perception and planning (the related Road-Following contract). This nas given us at

CMU a rather ,nique persciective on the interactior between the two At the DARPA Autonomous Land
Ven cle worlsrnOp ir, Vail, Colorado (April 1988), the sub;ect of discussion was -v asic research and
-tegrated system development can interact most profitaoy for both. Because ot our experience in ooth
omans, we were asked by DARPA to prepare a summary after the workshoo for use as a plarnrng

_ocur ent by the ALV and Strategic Computing Vision communities for future research We prepared
scr a cocument, and 't has been used for such research l13nning within 'he ALViSCVsion commun, y

Our experience has been Doth Positive and negative in the interaction amorg researcni paracgms
oas c v systems) Our conclusions are:

• Basic research withOut systems development can make great progress but evert'.aily
Deccmes out of touch with real-world problems

" Beyond that point. integrated systems research and development ;s essential for defirng the
soecfic problems that need to be addressed by further basic research efforts. Furthermore,
11'e simple act of collecting data for basic research becomes so demanding that ony an
"tegratecl system can serve as an appropriate data-collection platform.

" When spec;fic problems nave been defined through the system development effort, more
basic research is then needed Hnwever, because integrated systems are big and nave
great ,nerlia, they are resistant to easy change. Thus, for purely software engineerng
'easors. it ,s wrong to expect that all the new basic 'esearch will be fully compatible with
existing systems Rather. the basic research should be allowed to "piggy-oacK" on the big
systems, for example using the system to move a robot vehicle while collecting brand-new
data tor off-lire analysis with the new perceptual techniques.

" F naly, when the basic research has shown how to construct new, more reiiaole ard .sefui
comporentS, then a new integrated system development is appropriate.

T-ese ssues are discussed in our report to DARPA, which is reproduced as Appendix I
Excerimentation Issues for Mobile Robot Systems". Although the report specifically talks about the ALV,
-e sses and conclusions are appropriate for all research in large, integrated robot systems.

Accomplishments

T-e Key accmplishments of this research in the time period from July 1987 to June 1988 nave been-

• Vehicle and controller enhancements in support of 900 experimental hours

" Fast processing of radial range data for safeguarding by a soft bumper

" improvement of the Virtual Vehicle Interface be,.ean the Migh-level and low-level computer
svstems

" Development of the COUGER II blackboard with new features for geometric modeling, time-
warying coordinate systems, and uncertainty modeling.

" Exrer!ments with ,he Driving Pipeline and development of variable-sized driving units

" Dem"onstrations of complete NAVLAB system with these new features in Schenley Park.
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Technology Transfer

The NAVLAB has a fairly unique status as a robot vehicle whose architecture is suited for research n

both integrated robot systems and invidual component technologies (path planning, map navigation, arc

perception). Thus, the NAVLAB fills an important role in the research community as a focal point 'or

technoiogy transfer operations. The key areas of technology transfer to and from the NAVLAB "ave

oeen

* Exchange of software and concepts for perception and planning: Image data and visual
motion analysis code have been exchanged with the University of Massachusetts. A patn
planner developed at Hughes is being expanded on for use in the NAVLAB.

Export of NA VLAB hardware and software for other robot vehicles: The CODGER database
has been sent to Martin-Marietta for use in the ALV, to other ALV contractors includirg FMC

nd ADS, and to non-DARPA sites including NASA-Goddard and DEC. This hardware arc
software is being used at CMU and elsewhere for space exploration and underwater coo's
as well as several land vehicles.

Future Directions

We nave identifiec several problems and issues as likely directions for our researcri :n the next year
" We need to develop a new generation of the low-level controller system that proves a

high-performance UNIX-like environment.

* The vehicle path tracking is not as predictable as we would like. We have begun to deveioc
a new path tracking method based on continuous replanning of quintic arcs to provice more
precise vehicle control.

" We will continue development of the x-y-O path planner based on the Hughes path pianner.

and add to it uncertainty management and representation.

" The 1,.iving Pipeline concept has been very serviceable, but it has some key limitations. In
oart'cular, the need for a!l subsystems to operate in a pipeline means that computational a.,.
sensing resources are not operated at maximum efficiency. The new path planner may
provide a good alternative scheduling mechanism for perception and other activities.
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Section II

Evolution of the NAVLAB Vehicle
Under this contract, we developed the NAVLAB mobile robot van last year. With on-board sensors and

computing, and seating and controls for researchers, the NAVLAB is a self-contained laboratory for
research in autonomous mobile robots

In the year from July 1987 to June 1988, Robotics Institute researchers logged over 900 hours of
mobile robot experiments aboard the NAVLAB. In the course of this research, development has

continued on several aspects of the NAVLAB itself, including:

" Upgrades of the NAVLAB Hardware

" Integration of New Sensors

" Improvement of the Virtual Vehicle Interface
In addition, significant maintenance has been carried out to support the demanding schedule of live

experimentation.

Ongoing Hardware Development

This year, we made several improvements to the NAVLAB's mechanical systems to enhance its power

generation, reiiability, and driveability (Figure 1):
" The NAVL/PB, as originally designed, suffered from power falloffs during uphill runs, due

primarily to inappropriate carburetor design. To correct for this deficiency, we designed, built,
and installed an analog engine speed controller, which replaced the original throttle. The
new throttle control adjusts the engine carburetion to maintain a constant engine speed
regardless of load.

" New computers were installed in early 1988: one rack was re-configured to consolidate three
SUN 380s into one enclosure, and a re-worked WARP supercomputer was installed in a
VME cabinet. Modifications to the air conditioning system were made to cool these devices.
In addition, thermal shutdown sensors were installed in the WARP to prevent overheating.
While we experienced no difficulties in providing ample, clean power for these computers, the
air conditioning is operating continuously at full capacity and will require an extensive
overhaul or replacement in the near future.

" The electrical power generation problems, stemming from generator design, were resolved
with the vendor in 1988. A clean, constant power supply is now in place.

" Sound proofing was added to reduce interior noise levels.

" The hydraulic drive controls were upgraded to increase their reliability.

" New motion control boards were designed, built, and installed to improve motion control;
driving perfo,'nance is now smoother and virtually free of oscillation.

The net effect of all of these improvements is to create a more reliable research vehicle, with greater

uptime, more predictable behavior, and a better environment for the passenger/researchers. However,

there are additional mechanical issues that will need to be addressed in the near future. In particular,
some consideraticn will have to be given to engine performance. The vehicle's weight has doubled since

the project began, and as the capability to increase autonomous driving speed increases, so will the

demand for more horsepower.
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Integration of New Sensors

In conjunction with a related contract to develop high-speed off-road navigation, three new sensors
were integrated into the NAVLAB for specific experiments. These include a Global Positioning System
satellite receiver and an inertial navigation unit, which together we call the Vehicle Positioning System
(VPS), and a front bumper-mounted single-axis (1 D) radial laser scanner that provides a "soft bumper" for
vehicle safeguard. The inertial navigation unit provides position data that is consistently accurate to 0.5
m. However, inertial measurements tend to drift with distance traveled. Software proprietary to the
contractor processes data from the GPS to correct this.

To help with our experimentation, we devoted an extensive effort to developing utilities for imaging
inertial and range data. For range data, we developed utilities to store and retrieve scanner
measurements. These images can be displayed on either a SUN or an external video monitor. We also
developed a utility to store and recall data collected from the VPS system. Data from the VPS can be
displayed relative to time or to any other VPS data. Finally, we developed utilities to display a reference

path and compare it graphically to the actual path traveled.

Figure 2: Unexpected Obstacle Due to Control Error

With these new sensors, we were able to pursue the idea of clearance checking as opposed to the
traditional terrain planning for obstacle avoidance. In this approach, the space immediately ahead of the
vehicle is continually checked for obstacles, instead of relying on strict adherence to a long path planned

through cluttered terrain. The problem with the traditional terrain planning approach arises from errors in
position estimation relative to a global coordinate frame. Such errors result in the vehicle following an



actual path that deviates from the reference path by the amount of the error. However, since the tracking
and collision avoidance schemes use the same position estimate, collision avoidance continues to search
about the reference path rather than the actual vehicle path. Thus, even with perfect range data, terrain
planning can cause collisions due to imperfect vehicle control. However, with online clearance checking,
collision avoidance is controlled at the lowest level by dedicated sensors that move along with the vehicle

and thus are centered on the actual path rather than the idealized reference path. This is illustrated in
Figure 2, which shows how control error in, the vehicle path can cause it to encounter obstacles that could
not be predicted from range data, even perfect range data, taken at a distance.

So far, the scheme we have used for collision avoidance presumes a flat and level ground plane. The
range sensor scans in a plane horizontal to the ground plane and thus is certain to miss objects lower
than the height of the beam. We have so far demonstrated an implementation of collision avoidance

using two processors working on the vehicle at 5 mph. Consideration of other schemes is in progress
and will be implemented in simulation in the near future.

Improvement of the Virtual Vehicle Interface

The Virtual Vehicle Interface (VVI) is the command set through which the high-level planning and
perception software communicates with the low-level vehicle control system. In the past year, several
aspects of the Virtual Vehicle Interface were improved. One area of improvement was the enhancement
of the VVI command set. The new commands allow explicit control of steering angle and drive speed by
a host computer. This feature enables high-speed path-tracking algorithms to supply reference signal
updates to :he vehicle servo controllers at rates of up to 4 Hz, In this mode of operation, no queuing of

commands takes place; the reference signals to the servo controllers are updated as soon as the

corresponding command is received. We also added status fields to the arc commands to indicate

whether a commanded arc was executed normally by the vehicle.

In addition, we improved the ability of the controller software system itself to respond to external events

occurring asynchronously. These signals include current gearing (low/high/neutral and forward/reverse),
control mode (computer/manual), brake status (on/off), and activation of the kill switch. These hardware
status signals have also been made available to the host computer by activating the previously unused

"REP" command of the VVI command set.

The VVI was also modified to handle variable-length driving units, which allows it very naturally to

control speed at intersections. When the vehicle approaches an intersection to make a turn, the
lookahead distance of the sensors is reduced because of the bend in the upcoming path of the vehicle.
The NAVLAB can now account for this by shortening the driving unit size. The vehicle naturally slows
when passing through the turn, according to the driving unit. size. This enhancement to the NAVLAB was

dictated by the needs of the Driving Pipeline research, which is described in Section V of this report.

Finally, we have formulated a likely future enhancement that will be needed to the NAVLAB. There is a
need for faster processing of immediate arc commands, which are necessary to control the robot at

higher road speeds. During typical operation of the vision/navigation system, several immediate arc

commands are issued to the controller, with the intent that the most recent one of them is to supersede all
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previous ones. The controller currently queues arcs in the order they are received. The new algorithm,
which places highest priority on the most recently received commands, will allow faster execution of
immediate arc commands.
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Section III

Evolution of the CODGER Blackboard
In the previous year of this contract, we designed and implemented the CODGER mobi!e robot

blackboard to serve as the framework for the high-level NAVLAB software. CODGER was successfully
built, and with it we have performed many experimental runs with the vehicle. On the basis of these
expenences, we have become aware of a number of additional problems in mobile robot system design
that have not been raised in the literature to date. Accordingly, we have implemented a new version of
CODGER with many fundamental new features that address these issues.

The CODGER I System

The basic design of CODGER was described in our previous annual report, "June 1987 Annual Report:

Development of an Integrated Mobile Robot System at Carnegie Mellon" [8], and will not be repeated in
detail here. However, the significance of CODGER's key features has only become clear to us through
the last year of research and experimentation, so we will begin with a brief review of CODGER.

CODGER is a "blackboard" of the type that is now fairly common for robot systems. Actually, in
traditional terms, it is a distributed database with synchronization facilities. Each module is then a
separate program, which communicates with the central database; the modules may all be on one

computer, or they may be distributed among machines on a network, or any combination of these. Some
other mobile robot systems are based on message-passing, which is not equivalent to using a database:
a database system is more powerful then message-passing. To see this, note that there are two types of
data communication -- explicit passing of data from one module to a specific other module, and implicit
communication where the data is anonymously recorded, stored indefinitely, and reported to one or more
clients upon request. Message-passing systems implement only the explicit communication, but require
an outboard "database module" to handle the implicit communication; whereas database systems
implement the implicit communication which can carry out explicit communication as a special case.
Thus, database systems are more powerful than message-based systems. CODGER is a database
system; thus each module is provided with primitive operations to store data, to search for and retrieve

data, and to wait for data to arrive (as in producer/consumer dataflows).

CODGER implements a centralized database, with a single program that actually stores the data and
handles all communications with the modules. CODGER thus has a "star" architecture with the database
module (called the LMB, "Local Map Builder") in the center. Other designs might be to distribute the data
by broadcasting and replicating all data, or by partitioning the database among the processing modules;
these provide the same functionality as the centralized implementation, and differ only in performance.
The centralized implementation of the CODGER database adds a bit of (usually negligible) overhead time
to data transfers, but it facilitates the implementation of many of the sophisticated features described
below, such as updating observed object locations when the vehicle position is corrected. The star
architecture of CODGER is therefore a good choice for a research-oriented mobile robot system.

CODGER is based on a fairly standard database design that implements tokens composed of

attribute/value pairs. The values are generally of common data types such as integer, floating-point
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Figure 3: The Need for Geometric Values

number, Boolean, string, enumerated type, or array (or set) of any of these. However, CODGER begins
to depart from traditional databases by incorporating geometric values as well. The need for geometric
values is illustrated in Figure 3. Here, the vehicle is traveling down the roadway, has perceived the road
boundaries, and wants to perform path planning. Therefore, the database is requested to provide the set
of all obstacles known to be within the area of the roadway, up to the desired planning horizon of the
robot. To perform the query, the database must know where to search; thus, three things must be
intersected:

* the area of the roadway
' the field of view of the obstacle (range) sensor
* the distance limit of the path planner

The resulting intersected area is the search area for the the data retrieval; then, the Local Map Builder
(LMB) must find all obstacles whose area intersects this search area. To solve this problem, CODGER
implements data values that are geometric objects of the following types: point, line segment, polygon.
The search requests can specify a number of geometric operations such as intersection, union, centroid,
convex hull, area. For example, a module can request to find "all objects with area > 100" or "all objects
whose location is within the intersection of polygon X and polygon Y and whose distance from the
vehicle is less than 30". Such geometric primitives are necessary for geometric reasoning, which is the
heart of 'middle-level" mobile robot planning for obstacle avoidance.

CODGER was the first system to implement such geometric reasoning along with other database
primitives, but it is no longer unique in that regard. Other systems, such as the SRI Core Knowledge
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Figure 4: Fusion of Data in a Moving Robot

System, also implement geometric reasoning. However, such facilities address only the most basic
problem in geometric reasoning. Figure 4 illustrates the additional problem that arises from attempting tofuse data from several sensors in an asynchronous system. Here, vision data from time 17 is analyzed at
time 24, while range data from time 19 is analyzed at time 23; both results are fed into a sensor fusion
module at time 26, which produces an answer at time 28. The key point is that the data received by this
fusion module includes vision data relative to the vehicle's position at time 17, and range data relative to
the vehicle's position at time 19. Thus, all data concerning the vehicle/world relationsip must be time-
stamped, and the system must continuously maintain the vehicle-to-world transformation. Most systems
solve this problem by immediately transforming all data into some absolute world coordinates as soon as

it is received. However, this assumes that the vehicle-to-world transformation is always accurate which
is a bad assumption for most robot vehicles.
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Figure 5: The Need for Multiple Coordinate Systems

The problem is illustrated in Figure 5. In this figure, the vehicle had drifted from its ideal path, and the
drift was corrected at time 18. If the data were always stored in global world coordinates, then the vision
data from time 17 would have to be updated at time 18 when the vehicle position is corrected. However,
the vision system has just begun to analyze this data, and won't be finished with it until time 24. Thus,
the system has to remember until time 24 that the vision data from time 17 has to be corrected according
to the update of time 181 Such chains of geometric corrections quickly become unmanageable.
Therefore, CODGER implements a different approach. In CODGER, all data related to sensor
observations is stored relative to a "vehicle" coordinate frame, along with its time-stamp. The "vehicle-to-
world" transformation is parameterized by time. Thus, the fusion module at time 26 actually receives
sensor data from "vehicle at time 17" and "vehicle at time 19"; CODGER provides facilities for performing
all necessary coordinate transformations. In this case, the transformation depends only on the relative
vehicle motion and is independent of the vehicle-to-world update at time 18. Then, later on, when the
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path planner attempts to relate the sensor data to the "world" coordinate system, CODGER will
automatically inccrorate the entire history of the vehide-to-word transformation including the update at
time 18. Thus, the vehicle-to-world update at time 18 will be automatically taken into account by
CODGER and need not be explicitly remembered by the processing modules themselves.

These essential features -- geometric values and retrieval primitives, time-varying coordinate
transforms, and multiple coordinate systems -- were all implemented in the original CODGER system a
year ago. However, the discussion here has pointed out a number of significant insights about the

system that were developed within this past year.

This year, the representational facilities in CODGER have been upgraded to deal with a number of
additional problems that we have encountered or that we anticipate as a result of our further
experimentation with the NAVLAB vehicle. Together, we call this new version of the system CODGER II.

Geometric Modeling in CODGER II

What is beyond this road segment?

What is beyond the side edge
of the road?

Figure 6: The Need for Connectivity Information

In CODGER I, the only information about object locations was contained in the polygon attached to
each individual object. This has not proved adequate to represent map information for two reasons, as
shown in Figure 6. First, there is a constant need to identify the roadway segments in order, which is very

difficult using only geometric operations. The concept of "connectedness" of sequential road segments
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needs to be represented in the database itself. Additionally, for tasks such as perceptual identification of
road edges, it is necessary to ask what is "beside" the road so that its color can be identified. Such a
query requires that the current road segment have identifiable "sides", with connectivity information for
each. CODGER I had no facility for representing such connectivity intormation.

Road Segment Intersection SEMANTIC
TE Patch L
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Figure 7: The Semantic/Geometric Network in CODGER 11

The solution adopted for CODGER 11 was to implement a combination of semantic and geometric
network, as illustrated in Figure 7. In this new representation, there is an upper "semantic" level in which
objects are represented symbolically with toplogical connections. However, there is no actual quantitative
geometry at this level of representation. Instead, there is an additional "geometric' level of data objects in
which a complete ?D modeling system is implemented. In the geometric level, each object corresponds
to a ribbon or polygon, with separate data tokens for each edge and each vertex. Thus, semantic queries
such as 'What is the next road segment?" can be answered by tracing along the semantic/topological
pointers in the database, while metric queries such as "what is the shape of this intersection?" are
answered by examining the geometric objects and pointers. Different processing modules may be
interested in one or the other, or sometimes both, levels of the system.

The semantic/geometric network works well for representing map information, but it does not address
the issues raised by the task of map revision as the vehidle discovers details and corrections to add to the
a priori map data. Figure 8 shows an example of the problem: the map contains an error in the
coordinates of objects A and B. If A and B are stored geometrically in "world coordinates", it is very
difficult to decide exactly how to modify those coordinates to reflect the new information. Instead, the
solution used in CODGER I1 is the customary one for geometric modeling systems -- each geometrical
entity is assigned its own "intrinsic" coordinate frame, and each geometric link has attached to it a
transformation between the intrinsic frames of the objects being linked. With this mechanism, the
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Figure 8: Map Revision Requires Local Coordinates

transformation from A to P can be updated as needed. Of course, this may create an inconsistency if A

and B are both defined in world coordinates; the inconsistency is handled by uncertainty-modeling

techniques described later.

Time-Varying Transformations in CODGER II

With the new geometric modeling facilities of CODGER II, map information can be stored and revised.

However, such facilities are only suitable for a completely static world. When the vehicle moves in the

world, there arises a new type of geometric transformation that varies over time -- a dynamic

transformation. For example, the vehicle-to-world transformation varies over time, and the vehicle may

have a pan-tilt mount whose relationship to the vehicle also varies over time. To deal with time-varying

transformations, atl tr_-'nsformations should in concept be parameterized by time; thus, rather than asking

"what is the distance from A to B?" we should ask "what is the distance from A to B at time T?" To

implement this, we introduce the concept of frame generators. A frame generator is a functon F(t) that

returns a geometric transform for any given time t. Now, each link between geometnc objects can have a

frame generator attached to it, so that time-varying relationships can be managed.

Several types of frame generators are needed to adequately represent all the necessary relationships

in the database. First, there are the truly ime-varying transforms such as the vehicle-to-world

relationship, which we symbolize as F(t). However, most objects are stationary in the world and thus the

relationship to the world is the same for all times t. We call these constant transforms and symbolize



20

A is in the map

JA

- At time tO we see B

What is the relationship between A and B?

Figure 9: Several Types of Time-Varying Relationshnp

(World frdonstant
F(t) f tn

tim e-varying B

Vehicle Fto observation

Figure 10: Several Types of Frame Generator

them by F. In Figure 9, object A is stationary and thus has a constant transform to the world coordinate
system. In this example, the vehicle observes object B at a specific instant of time t,. We call this an
observation, and denote its frame generator by Fro. This frame generator can only produce an actual
transform at the time to; otherwise, Its value Is undefinad. fl-a'Iy, although B is detected in sensor data
that is relative to vehicle coordinates, we do not believe that B is attached to the vehicle. Instead, we
assume it is fixed in the world and infer a frame generator to attach it to world coordinates. This requires
a new kind of frame generator that is constant, yet is inferred from observations; we call it an interred
transform and denote it by f.. Note that it is determined from the observation and the vehicle-to-world
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transform according to f. = F0 F(t), i.e. the product of the observation of B relative to the vehicle, and the

vehicle-to-world transform at that moment to. The resulting geometric modeling network is snown in
Figure 10

F" * F* F

Worl d F-

Sensor Vehicle F

Figure 11: Affixment Groups

With this rich set of frame generators, all the important time-varying relationships can be represented.
However, there is a danger that the system may degerate into a chaotic spaghetti of geometric

relationships, with no clear rules for finding the transform between two arbitrary objects. To eliminate this

problem, we have developed the concept of affixment groups, which are groups of objects that are

assumed to have a constant relationship to each other (Figure 11). We partition all objects into affixment

groups of mutually fixed objects; thus, there is one affixment group for the world, containing all objects n

the world, and one for the vehicle that includes all vehicle-relative objects. If the vehicle iad a pan-tilt

mount for a camera, the camera would have its own affixment group. Now, within each affixment group,

we create an object called the affixment object that simply represents the coordinate frame within which

the objects of the affixment group is defined. Each affixment group has a single affixment object, so there

is one for the world coordinate frame, one for the vehicle coordinate frame, etc.

Now some simple rules are adopted for the frame generators that link the objects in the database

Every object defined in a coordinate system has a constant frame generator F. that links it to the

corresponding affixment object. Thus, for example, all objects in the mao have constant frame generators

that specify where they are in world coordinates. So, for any two objects :n the world, the transform from

one to the other is simply computed from the transforms that link each to the world coordinate frame. No

search through the database is required. Where desired, objects within an affixment group may also

have constant frame generators that link them directly.

Constant frame generators are not allowed to link objects from different affixment groups, because

such objects are assumed to be moving relative to each other. For these calculations, the affixment
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objects themselves are linked by a network of time-varying transforms F(t). One of these is the vehicle-
to-world transform; another may be the pantilt-to-vehicle transform, etc. These time-varying frame
generators can produce transforms that depend on time. No other time-varying transforms occur in the
database; only those that link affixment objects. Thus, to find the transform between two objects in
different affixment groups, ,,t a particular time, one applies the constant transform from each object to its
respective affixment object, and the transform between the affixment objects which depends on the time.
Again, no search through the database is required to evaluate such relationships.

Uncertainty Modeling in CODGER II

SVe hil F W) °*

Figure 12: Recording an Observation

When an object is read in from a map database, it can be directly attached to its affixment object by a
constant transform as described above. However, when it is derived from the robot's perception, a
slightly different representation is needed. The situation is illustrated in Figure 12. Here, an object has
been seen by the vehiclb out it is assumed to be affixed to the world. It would be wrong to affix it to the
vehicle, because then it would be assumed to move as the vehicle moves. Instead, the object is created
within the affixment group of the world, with an observation transform Ft to relate it to the vehicle

coordinate system., To affix the object to the world, an inferred transform f. must now be created to relate
the object to the world coordinate system. This is done by using the observation transform in conjunction
with the current value of the vehicle-to-world transform. Thus, while the object is seen by the vehicle, it is

stored in relation to the world, using the best estimate of the current vehicle position.

Observations of objects can also form one of the most important sources of information for updating the
vehicle-to-world transform, that is, for performing landmark navigation. Such navigation primarily takes
the form of correcting for drift and error that has accumulated over time from such other mechanisms
including wheel motion encoders, inertial guidance systems, and visual motion analysis. CODGER II
includes a complete facility for implementing such navigational updates. The basis for updating is the
representation of each geometric transform not only by its value, but also by the covanance matrix that
describes the uncertainty with which the value is known. Thus, at all times, geometric uncertainty is
recorded throughout the database. In this way, measurements that are slightly in error can be reconciled

by weighted averaging of multiple uncertain values.
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Figure 13: Two Scenarios for Landmark Navigation

Two scenarios for landmark navigation are shown in Figure 13. In the first, an object A is known from
the map, and the vehicle now observes it. From the map, the representation of Figure 14(a) is created,
with a constant transform from the object to world coordinates. Now, when the observation is made, the
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Figure 14: Representation of Landmark Observations

situation is shown in Figure 14(b), where a cycle is created between the constant transform from world to
object, the observation from object to vehicle, and the vehicle position which is the transform from vehicle
to world. Any time there is a cycle in the geometric relationships, inconsistency may arise due to the
movement errors cited above and uncertainty in perception. Such cycles of uncertainty can be resolved
by classical least-squares methods to yield updated transforms that have optimal values. In this case, the
uncertainties that would be weighed against each other are uncertainty in the map data, uncertainty in the
perceptual process, and uncertainty in the vehicle position estimate. Most likely, the vehicle position is
the least certain; thus, the effect will be to correct the vehicle-to-world mapping at this moment in time.

The second scenario of Figure 13 shows an object that is not in the map, but it is seen twice. The first
time it is seen, at time t1, an inferred transform is created to relate it to world coordinates. When it is seen
again at time ,, a new observation is obtained as shown in Figure 14(c). This creates a cycle of a
different type within the database. First, note that the inferred transform does not create a meaningful
cycle because it was only the result of the computation from the vehicle-to-world transform and the first
observation. However, the second observation and the first observation create a cycle as follows: the
observation from the object to the vehicle at time t,, through the vehicle-to-world transform at time t1,
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back through the vehicle-to-world transform at tie t2, and back to the object through the observation at
time t2. This cycle can be resolved to find the new optimal estimate of the inferred locati'r of the object in
the world, and also to balance this against the uncertainty in the vehicle-to-world transform itself. Thus,
multiple observations of the same object give improved estimates of the vehicle position and motion.

Of course, it is also possible that several observations of an object simply cannot be reconciled
consistently with each other and with the estimated vehicle motion. In this case, there is a solid statistical
grounds for assuming that the object itself is moving. A new affixment group can be created for that
object, and it can now be tracked over time to determine its motion, i.e. the time-varying transform from
that object to the world. We have not performed any experiments along these lines, but this at least
points the way towards a data representation that can manage information about a dynamic environment.

We may note that each position or motion sensor, as well as the landmark navigation processes just
described, all produce "snapshot" estimates of the vehicle motion or the vehicle-to-world transformation.
These estimates themselves can be kept in a network. which will have many cycles; the classical
algorithms can then be used to provide a least-squares estimate for the entire history of the vehicle
motion. In this way, the current vehicle position estimate can be kept continuously up-to-date, and the
estimated history of vehicle travel will be smooth. Whenever a new, highly confident estimate is made,
such as the sighting of an important landmark, the vehicle's entire estimated history of travel will be
smoothly updated instead of producing an instantaneous "jump" to a new position.
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Section IV

Experiments With the Driving Pipeline

Introduction

High Level Plan
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Figure 15: Driving Control Scheme

This paper describes a driving control scheme for a mobile robot that drives the robot vehicle outdoors,

avoiding obstacles, and keeping the vehicle within a navigable area. As illustrated by Figure 15, the

driving control scheme takes a high-level navigation plan from planning modules and sensor data from
sensors, and generates vehicle motion commands, performing the necessary computations including

perception, environment modeling, path planning, and vehicle control. We have developed a scheme for

the coordination of these tasks, which we call the Driving Pipeline. This paper describes the Driving
Pipeline, the various processes that it coordinates, and the experiments in which the Driving Pipeline has

been successfully used for building mobile robot systems.

Our objective is to build an autonomous mobile robot working in the real world in real-time, so we
adopted the following design goals:

* Flexibility: Other systems have been developed that perform a single navigation task well;
however, these systems are not easily extended to handle a broad range of tasks.
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Continuous Vehicle Motion: Continuous motion is more desirable than stop-and-go
motion, because it produces higher vehicle speeds and smo..ner control.

*Adaptive Control: Driving control must be adaptive to the environment and to the internal
condition of the robot vehicle. For example, the vehicle should be able to drive faster using
less sensor data on a flat broad ground than on a winding narrow road. The driving control
scheme must adjust its computation and maintain effective coordination among numerous
perception and planning processes.

Parallel Execution: For real-time motion, driving control requires a large amount of
computation in a variety of different procedures. For this end, parallel computing is the most
practical solution. In addition to small-grain parallelism such as parallel machines for signal
data processing, large-grain parallelism can be used to coordinate the various tasks involved
in driving. Parallel computing can take advantage of two kinds of parallelism: parallelism in
processing steps and parallelism in data to be processed.

In order to achieve these goals, we developed the Driving Pipeline. A pipeline is a form of parallelism
in which the computation is decomposed into a sequence of processing steps, called stages, to be
executed in a fixed order. Typically, each stage is a separate processor receiving input data from the
previous stage and providing output data to the next stage. A stage commences execution whenever

data arrives from the input. A pipeline is used for performing the same computation over a number of

different data sets. Since the pipeline can begin processing a second data set before the first has
finished, the stages run in parallel. The pipeline processes data sets at the rate of one per cycle time.
The cycle time is the longest stage time. The total time required to process a given data set (called the

job time) is the sum of individual stage times. The construction of our pipeline is based on two key ideas:
* The Driving Unit: We divide the area in which the vehicle navigates (road, hillside, etc.)

into a sequence of small areas called driving units so that it can process each driving unit
separately. Each processing module for perception and planning will operate successively
on each driving unit in turn.

* Execution Pipeline: The Driving Pipeline allocates the primitive processing steps along a
pipeline so each one can work independently, receiving input data from the previous
processing step and passing data to the following processing step.

These two key ideas enable the pipelined execution of the primitive processing steps on the sequence

of driving units, which provides enough throughput to allow continuous vehicle motion. As the vehicle

encounters changes in the road configuration, it can place driving units with different sizes and intervals

by adjusting the sensor view frames, execution intervals, and vehicle speed.

Although several mobile robot systems have been built in the past, they did not address driving control

scheme very deeply. Stop-and-go motion, although it does incorporate all of the primitive processing

steps, deliberately avoids the problem of continuous motion control [2, 4, 7, 11]. Waxman et al.
mentioned the necessity for vehicle speed adjustment using knowledge, but didn't show any method for

doing so [12]. Brooks developed a layered control structure that drives a vehicle continuously (1].
However, it does not have the ability to adapt the control to meet the changing needs of perception.

Dickmanns and Zapp develped a system for nigh-speed navigation on the German Autobahn [3]. This

system tracks simple visual features (e g., white lines bordering the road) and cannot be easily extended

to handle more difficult perceptual scenarios.

To solve these problems, we have developed the concept o. the Driving Pipeline and verified it in two

experimental mobile robot systems. the Terregator and the NAVLAB. This paper desaibes the Driving
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Pipeline, including the component concepts of the Driving Unit and the Execution Pipeline, and describes
our experiments with these vehicles.

Processing Steps and the Driving Unit

We divide the computation necessary for driving control into the following primitive processing steps:
" The Prediction step plans the area that the vehicle will move into next.

* The Perception step detects navigable area boundaries and obstacles using sensor data.

" The Environment Modeling step makes a description of the vehicle environment and
updates the estimate of the vehicle position.

" The Local Path Planning step plans the vehicle trajectory.

" The Vehicle Control step drives the vehicle mechanism.
These steps must each execute in turn to process each area of terrain that the vehicle will traverse.

We developed the concept of the driving unit to indicate the area that each primitive step will process
once in each execution cycle. The vehicle's entire route is divided into driving units which are passed,
one at a time, to each of the primitive processing steps. In this way, planning and perception are
synchronized to provide driving control.

Prediction and the Driving Unit

Figure 16: Sequence of Driving Units

The Prediction step works as the manager of the Driving Pipeline. It receives the high-level plan from
the map navigation level of the system, predicts the next chunk of area into which the robot vehicle
should move, and indicates it by defining a new driving unit. Because the driving units are placed in the
order that the vehicle travels, the sequence of driving units forms the vehicle passage, which outlines the
planned path of the vehicle (Figure 16).

The parameters for placing the driving units are:
* location of the driving unit;

" type of the driving unit: such as on-road, open-terrain;

" size of the driving unit : the width and length of the driving unit;

* interval of driving units : the distance between the centers of consequtive driving units along
the vehicle trajectory.

The driving unit location is determined based on the high-level plan derived from the navigational map,
combined with the vehicle's current position estimate. The type of driving unit can be road or intersection,
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depending also on the map and the vehicle position. The fact(,, :,iat determine the size and the interval
area are discussed in the following sections.

Perception and the Driving Unit
The Perception step scans a driving unit with sensors to determine the key objects within it. Perception

results will be used by the Environment Modeling step both for determining navigable areas and for

updating the vehicle position estimate.

Two parameters, the driving unit and a scanning position, direct the Perception step. The driving unit,
which is given by the Prediction step, indicates the area that the Perception should see. Because sensor

data must cover the driving unit, the sizes of sensor view frames give the upper limit of the driving unit
sizes.

Th- sc',nning position is the position at which the Perception step should scan the driving unit. Two
factors determine the scanning position: the required accuracy of the visual measurement, and the need

for specific vehicle position information. The required accuracy of the visual measurement is important
because of the reduced accuracy as distance increases. Thus, the vehicle should be close enough to the
driving unit to satisfy the accuracy needs of the Environmental Modeling step. The need for specific
vehicle position information also constrains the scanning position. The vehicle position estimation is

updated with both the perceptual results and dead reckoning from the control system. In general, the
perception result gives a more accurate vehicle position estimate. The vehicle position estimated with the
perception result will, of course, be a scanning position. Therefore, when the mobile robot system needs
an accurate vehicle position estimation at a specific position, this position should be the scanning
position.

Once the driving unit and the sca,;ning position are determined, the Perception step can calculate the
sensor view frame relative to the vehicle and aim the sensors. This enables Perception to aim the

sensors adaptively.

Environment Modeling and the Driving Unit
By analyzing the perception results, the Environment Modeling step produces an environment

description that indicates a navigable area from the current vehicle position toward the end of the last
scanned driving unit.

The Environment Modeling step also updates the vehicle position estimation. Because the vehicle is

traveling continuously and the scanning positions are discrete, the Modeling step merges the perception
result and the dead reckoning updates iu estimate the vehicle positions between the scanning positions
and beyond the last scanning position.

Local Path Planning and the Driving Unit
The Local Path Planning step determines the physical vehicle trajectory within the navigable area

determined by the Modeling step, from the current vehicle position to the end of the last scanned driving

unit.

As shown in Figure 17, the local path plan restricts the minimum size of a driving unit, because the
driving unit m ist be large enough to allow the vehicle to manuever and avoid obstacles.

The Driving Pipeline includes two levels of path planning: the driving passage from the Prediction step
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Figure 17: Driving Unit Size for Vehicle Maneuvering

and the trajectory from the Local Path Planning step. If the map database is ccmplete, the driving
passage can be planned before navigation by consulting the map data. If not, it is determined gradually
based on perception results from the previous driving units. This is the reason why we include planning
the vehicle passage in the Driving Pipeline level of the system rather than in a higher level.

Vehicle Control and the Driving Unit
The Vehicle Control step drives the physical vehicle. It generates a set of motion commands for the

vehicle mechanism from the trajectory plan given by the Local Path Planning step. Because the trajectory
plan ends at the far edge of the last scanned driving unit, the vehicle never moves into an unscanned
area. Also, this step adjusts the vehicle speed to be optimal unless the Local Path Planning step gives
commands on speeds (such as stopping at a specific place). The details will be described below.

Continuous Motion, Adaptive Control, and the Driving Pipeline

The simplest control structure for implementing the Driving Unit concept would be for the vehicle to
stop at the end of each driving unit, process the next one through each of the primitive steps, then drive
across the next driving unit and stop, repeating this cycle over and over. This paradigm is known as the
.stop-and-go" model of vehicle control, and it produces very jerky motion as well as being far below the
optimum vehicle speed. To remedy these problems, we apply the concept of pipelined execution of the
primitive steps to fqrm the Driving Pipeline.

Pipelined Execution for Continuous Motion
In order to drive the robot vehicle continuously, the Vehicle Control step should work on one driving unit

after another without stopping the vehicle. To accomplish this, the Prediction step, die Perception step,
the Modeling step, and the Local Path Planning step must have finished processing the next driving unit
before the Vehicle Control step finishes the current driving unit. This is the reason that continuous vehicle
motion needs a Driving Pipeline to process multiple driving units in parallel.

The Driving Pipeline supports continuous vehicle motion by using pipelined executon. As described
above, the processing steps are allocated along the pipeline, and the Driving Pipeline executes the
processing steps in parallel by passing a sequence of the driving units through this pipeline. Figure 18
illustrates the pipeline execution of the Driving Pipeline as follows:

1. When the vehicle is on Driving Unit 1, the Prediction step places a new prediction for
Driving Unit 4.
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Figure 18: Pipelined Execution of the Driving Pipeline
2. When the vehicle is on Driving Unit 2, the Perception step works on Driving Unit 4. At the

same time, tre Prediction step places the next driving unit, Driving Unit 5.

3. When the vehicle is on Driving Unit 3, the Modeling step determines the vehicle passage
and the Local Path Planning step plans the path to the end of Driving Unit 4. In parallel, the
Prediction step defines Driving Unit 6 and the Perception step works on Driving Unit 5.

4. When the the Vehicle control step drives the vehicle on Driving Unit 4, the Prediction step is
defining Driving Unit 7, Perception is working on Driving Unit 6, and the Modeling and the
Local Path Planning step are working on Driving Unit 5.

Several key features of the Driving Pipeline make the pipelined execution possible. First is the concept
of the driving unit, which is critical because it allows the route ahead of the vehicle to be partitioned into
individual units for processing by the successive steps. Because each driving unit specifies an area on
which one processing step works, the Driving Pipeline may assign the different processing steps to
different areas aiong the vehicle passage.

The second is the constant flow of the driving units through the processing steps in a prearranged
sequence. Each driving unit is created at the Prediction step and is passed through the following steps
from one step to the next step ending with the Vehide Control Step, thus forming the data flow through
the processing steps. This flow is always one way and in the same direction; no driving unit skips any
processing step or goes back to the previous steps. Therefore, the order of execution of the primitive
processing steps can be "hard-wired" into the system without the need for symbolic reasoning to decide
what to do next.
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The third necessary feature is the independent computation of the processing steps. The computation
for driving control is divided into processing steps in such a way that each processing step performs a
different function. Each step requires as input only the outputs of the previous steps. Therefore, each
step can only wzl- on a dr.:.; unit after the previous steps have compieted their processing on that
driving unit.

The fourth feature is the order of the driving units themselves. Since the driving units are created as
the vehicle travels and are placed along the vehicle passage, the order of their generation is always the
same as the order in which they are processed by the processing steps. Therefore, the Driving Pipeline
can feed the driving units to the processing steps continuously.

Finally, the ability of the sensors to look ahead of the vehicle more than one driving unit's distance is
necessary. This permits Perception to be working at a distance beyond the next driving unit. This
ultimately limits the distance over which pipelining can be effective.

The existence of all of these features allows pipelined execution in both of the necessary aspects, the
processing and the data. The name "Driving Pipeline" comes from the pipeline of processing steps, the

sequence of driving units, and the pipelined execution. The following sections provide a more detailed
examination of the pipelined execution.

Execution Intervals of the Driving Pipeline
The "execution interval" of the driving control system refers to how often the mobile robot system

executes the cycle of the primitive processing steps. Adjusting the execution interval to be optimal is
essential for an autonomous mobile robot system, because the necessary execution intervals depend on
driving conditions such as the width, flatness, and curvature of the road. Execution intervals that are too
long may cause unstable vehicle motion, because the vehicle position and the path plan are updated only
once in each interval. On the other hand, execution intervals that are too short consume unnecessary
computation and slow down the vehicle speed because the amount of computation in each interval is
roughly constant

To provide the optimal vehicle speed control, the driving control scheme needs a way to compute and

change the execution intervals. In the Driving Pipeline the sizes of the consecutive driving units
determine the execution intervals, because each execution cycle works on one driving unit and the
number of driving units per unit trajectory length is equal of the number of the execution cycles.
Therefore, the Driving Pipeline is able to adjust the execution intervals by changing the driving unit
;ntervals.

If the vehicle could be controlled to exactly follow the planned path, the driving units could be made as
long as the range of the effective field of view of the sensors. Unfortunately, the actual vehicle trajectory
may differ from the local path plan because of many reasons, particularly the error in the control
mechanism and the inaccuracy of dead reckoning. The cumulative error in the control of vehicle motion
and the allowed error tolerance in the vehicle position are the factors used to determine the driving unit
intervals.

The error in the vehicle position and direction, which grows as the vehicle travels, must be canceled by
the execution of the driving pipeline before it surpasses an error tolerance. Therefore, if the accumulated

error increases very rapidly, the intervals of the driving pipeline must be shorter. If the accumulated error
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increases slowly, they can be longer. For example, because errors in the vehicle direction can produce a

larger accumulated error in the vehicle position than errors in the vehicle displacement, the interval must

be shorter in turning than in moving straight.

2 3 4

2 3 4

Prediction F-- -

2 3 4

Perception II I I I I'

2 3 4

Modeling F'H F-- F-H

2 3

Local planning - I''

12 3

lehicle control

Figure 19: Badly-Balanced Execution of the Driving Pipeline

As mentioned above, vehicle maneuverability restricts the minimum size of a driving unit. If a driving

unit interval is shorter than a driving unit length, adjacent driving units overlap.

Parallelism in the Driving Pipeline
Although the pipelined execution allows the processing steps to work in parallel, it does not ensure a

high degree of parallelism. Figure 19 illustrates an extreme example in which parallel execution is not

well maintained. In this figure, the vehicle speed is too high. This brings the vehicle to the end of the

local path plan before the next plan is produced by the Local Path Planning step. The vehicle then has to

stop at the end of the current driving unit to wait for the new path plan to be compieted. In this example,

the Prediction step, the Perception step, the Environment Modeling step, and the Local Path Plan step

must work serially without any parallelism. In this section and the next we discuss the parallelism in the

Driving Pipeline and a mechanism for keeping it high. This section discusses parallel execution among

the Prediction, Perception, Environment Modeling, and Local Path Planning steps. The next section
discusses parallelism between these steps and the Vehicle Control step.

The Prediction, Perception, Environment Modeling, and Local Path Planning steps generally work on

each driving unit sequentially, with their execution times overlapping each other on consecutive driving

units due to the execution pipeline. However, the parallelism among these steps depends on whether or

not there exists a suffilently rich map database. When such a map exists, we call this the map

navigation mode; if not, the vehicle drives in the map building mode. The timing of the start of pipelined

execution varies in these these two modes. In the map navigation mode, the map database can offer

enough information so that the Prediction step is able to place a new driving unit without using the

perception results from the preceding driving unit, relying instead on the map database and the
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Figure 20: Parallel Execution Pattern in the Map Navigation Mode

perception results from earlier driving units. Therefore, the Prediction step can work on the next driving
unit before the Perception and the Environment Modeling steps finiz the current driving unit. This
produces the execution pattern illustrated in Figure 20. In this case, since all processing steps are ready
to work on the next driving unit just after finishing the current one, complete pipelined execution is
achieved.
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Figure 21: Parallel Execution Pattern in the Map Building Mode
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In the map ouilding mode, the map database does not have enough information about the unscanrea
areas, so the Prediction step needs the perception result on the current driving unit in order to place the
next driving unit. In this case, the Prediction step has to wait until the Perception step and the

Environment Modeling step finish the current driving unit. The resulting execution pattern is illustrated in
Figure 21. Consecutive execution cycles overlap less in the map building mode than the map navigation
mode

The difference between the map navigation and map building modes explains one reason that a rich
map database results in a higher vehicle speed than the poor map database. In addition, a rich map
database allows perception to potentially be faster and more accurate, thus reducing the processing ,ime

and/or allowing larger driving units.

In both execution modes, the scanning position is a key factor in maintaining these parallel execution
patterns because it regulates the execution patterns. The Environment Modeling step, the Locai Path
Plan step, and the Vehicle Control step start just after the previous step finishes. The Prediction steo
starts just after the Perception step finishes in the map building mode, and may start any time in the map
navigation mode. So, all of these steps can start at a time independent of the actual vehicle progress
On the other hand, the Perception step can start working only when the vehicle reaches the Oes:red
scanning position. The scanning positions that produce the highest parallelism, illustrated *n Figures 20
and 21, are given by the following equation:

T
scanning distance = - Lii

where

Li = driving unit interval

TP= total job time of Perception, Environment Modeling and Path Planning

T = cycle time of Driving Pipeline

In this equation, the "scanning distance" is the distance from the scanning position to the driving unit to

be scanned. The "cycle time" is the time between consecutive execution cycles, which is the time taKen

'or the vehicle to travel one driving unit. In the map navigation mode, the cycle time is determined as
TC.=T,, ,2

whereas in the map building mode, the cycle time is:

T,= ax (T., T,)

where

T,, job time of the most time consuming step

T= total job time of Prediction, Perception and Environment Modeling

In the map navigation mode, if the most time consuming processing step works in the whole cycle time,
the execution pattern will be the most condensed and will exhibit the highest degree of parallelism In this
execution pattern, the Perception, Environment Modeling, and Local Path Planning steps must work after
the vehicle passes the scanning position. That is the derivation of the above equation for the map
navigation mode. In the map building mode, the processing for the sequence of the Prediction,
Perception, and Modeling steps can not overlap with the processing of this sequence for consecutive
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driving units. Therefore, this execution sequence behaves like one individual processing step. That is the
reason for the above equation for the map building mode.

Vehicle Speed and Driving Pipeline
The Vehicle Control step must take into account the execution time of all the processing steps in order

to achieve the optimum vehicle speed. Too high a vehicle speed requires the vehicle to stop at the end of
each driving unit, as described in the previous section. In this section, we discuss the highest possible
vehicle speed and the method to achieve it.

Because the distance that the vehicle moves in one cycle time is equal to the interval of the driving
unit, the highest vehicle speed is described by the following equation:

Li
vehicle speed < - (4)

The maximum vehicle speed is less than the driving unit interval divided by the cycle time because
distance must be allocated for decelerating the vehicle in the event that some stage of the pipeline
requires more time than expected.

If the scanning position is adjusted as described above, the cycle time is given by Equations 2 and 3.
Then the above equation can be rewritten as follows:

in the map navigation mode,
Li

vehicle speed = (5)

and in the map building mode,

(6)Li

vehicle speed = I

These equations are based on the highest degree of parallelism among the processing steps and
therefore give the highest achievable vehicle speed.

The vehicle speeds given by these equations are possible only when the scanning position is optimally
adjusted. The scanning position, however, may be determined by other factors as described previously.
For example, the scanning distance may be shorter than the distance given by Equation 1 because the
Perception step requires a closer distance for more accurate measurement. If the scanning distance is
shorter than the distance given by Equation 1, the speed of the Driving Pipeline is given by the following

equation:

D
vehicle speed = - (7)

where



37

DS = scanning distance

These equations (Equation 4 - 7) describing the vehicle speeds explain the following vehicle behavior
patterns, which demonstrate the adaptive control capabilities of the Driving Pipeline:

" The most time consuming processing step limits the highest vehicle speed. The Driving
Pipeline is capable of adjusting the vehicle speed to be as high as the processing times will
allow.

" Longer driving unit intervals produce a higher vehicle speed. If the robot vehicle drives in
easy driving conditions such as a broad, flat, straight road, then the Prediction step may
define driving units with large intervals. The vehicle speed will then be adjusted to be higher.

* Likewise, shorter scanning distances produces a slower vehicle speed. If the Perception
step has to look at objects from a closer distance, the vehicle slows down. This behavior is
similar to a human driver looking around carefully.

These behaviors need not be explicitly programmed into the system. They arise naturally as a result of
the operation of the Driving Pipeline and the calculation of each driving unit interval based on the
geometry of the road, the vehicle, and the sensor field of view.

Although Equations 4- 7 assume that each processing step always requires a constant execution time,
the actual requirements may vary from time to time and place to place. In such a case, the Driving
Pipeline calculates the vehicle speed with the following equation, which is a modified version of Equation
7:

Dr
vehicle speed = - (8)

Dr = remaining distance of local path plan

Tr = remaining job time

In this equation, Dr is the distance from the current vehicle position to the end of the path plan in the
current driving unit, and T, is an estimate of the total remaining execution time for the Prediction,
Perception, Modeling, and Local Path Planning steps working on the next driving unit. The initial value of
T, is a predicted execution time for these processing steps. Whenever these processing steps finish
processing a driving unit, T, and D, are recalculated and the vehicle speed is updated. This allows the
vehicle speed to adaptively respond to the changing requirements for its own computation time.

The Driving Pipeline in Action: Experimental Results
Implementing the Driving Pipeline

We have developed and tested the Driving Pipeline through building several experimental mobile robot

systems, called Sidewalk System 2, Sidewalk System 3, and the Park System, [5] [61 [101. Sidewalk
System 2 and Sidewalk System 3 drive an experimental vehicle called the Terregator on the network of
sidewalks on the campus of Carnegie Mellon University. The Park System drives the NAVLAB, a

computer-controlled van, on a road in Schenley Park adjacent to Carnegie Mellon. Figure 22 shows
these vehicles, which are both equipped with color TV cameras and a laser range scanner made by
ERIM. While the Terregator is linked to several SUN-3 workstations in the laboratory with radio
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Figure 22: Terregator and Navlab
communication and cables, the NAVLAB carries four SUN-3s on board. In the remainder of this chapter,
we will describe primarily Sidewalk System 3 because it demonstrates the Driving Pipeline most clearly.

Figure 23 shows the module structure of Sidewalk System 3. The processing steps are implemented
as individual programs and are linked through the CODGER distributed database, a system-building tool
written at Carnegie Mellon to support large-grain parallelism for mobile robot navigation [91. CODGER
makes it relatively easy to build the Driving Pipeline because of its capability to support parallel
processing among multiple computers. All of the systems mentioned above use CODGER in this way.

Processing Steps and Driving Units
Figure 24 shows a diagram of the primitive processing steps working on one driving unit in approaching

an intersecton. Figure 24(a) shows the driving unit placed by the Prediction step. In Figure 24(b), the
trapezoid is the sensor view frame aimed by the Perception step to cover the driving unit. Figure 24(c)
shows the vehicle position estimated by the Modeling step. The Vehicle Control step drove the vehicle as
illustrated in Figure 24(d).

Pipeline Execution and Parallelism
Figure 25 is a recorded timing diagram of the processing steps. The bars in the figure indicate the time

during which each step is processing a driving unit. The driving unit number appears next to the bar.
Because Sidewalk System 3 has a complete pre-stored map database, the Prediction step does not need
to wait for the Perception step to place a new dnving unit and the consecutive pipeline executions overlap
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Figure 23: Module Structure

completely. This is the "map navigation" mode described above. Because the scanning position and the
vehicle speed were adjusted as described above, the most time consuming step (Perception) was the
limiting factor in the cycle time of the system.

Execution Intervals
Because turning at intersections requires more accurate vehicle position estimation than following

sidewalks, and because the Terregator vehicle makes larger dead reckoning errors in turning than in
straight motion, the Prediction step uses a shorter driving unit interval while the vehicle is turning. Figure
26 shows the driving unit intervals around the intersection and the straight sidewalks. On the other hand,
Sidewalk System 2 used constant driving unit intervals and had unstable turning because of the large
dead reckoning error. Sidewalk System 3, however, did not have such unstable motion thanks to the
adjustment of the driving unit intervals.
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Figure 24: Processing Steps

Vehicle Speed
Figure 27 shows a recorded vehicle speed that was adjusted according to Equation 8. The vehicle

speed was recalculated whenever the processing steps were done. The vehice slowed down around the
intersection where the driving unit intervals were shortet and went back to a high speed on the straight
road where the driving unit intervals were longer. Because of the hardware limitations of the Terregator
vehicle, the vehicle speed could not be changed frequently; this is the reason that the recorded vehicle
speed is not smooth.
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Figure 25: Timing Diagram of the Processing Steps

Sensor Aiming
Our experiments on the Carnegie Mellon campus test site showed the necessity for adaptive sensor

aiming. The fixed sensor view frame created a problem in turning at the intersections, because the
vehicle had to turn through a large angle and the fixed sensor view frame could not cover the destination
sidewalk while the vehicle was turning. To remedy this problem, the sensor view frame has to be aimed
so that it covers the vehicle's destination. In addition, the scanning distance must be different in following
straight sidewalks and in tuming through intersections. In turning through an intersection, the vehicle
position estimation must be accurate in both the vehicle's heading direction and the direction
perpendicular to the vehicle's heading. Therefore, the scanning distance must be short. During straight
travel, however, the vehicle position estimation along the vehicle's heading direction does not need to be
so accurate and the scanning distance may be longer.

Figure 28 shows the sensor view frames and the scanning positions. The scanning positions were
calculated using Equation 1 and the local path plan that was produced in the previous execution cycle.
The scanning distance varied at the intersection and on the sidewalks.

To aim the TV camera into the predicted driving units, pan and tilt mechanisms are needed. This can
present a very challenging timing problem if mechanical pan and tilt mechanisms are used. To avoid this,
the Terregator vehicle was equipped with two cameras and switched between them instead of using a
mechanical pan. The TV cameras had wide angle lenses and covered broad areas. The Perception step
processed the desired rows of the image in place of a mechanical tilt. This "software pan/tilt" is very fast
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Figure 26: Driving Unit Intervals

and simple to program, as opposed to a mechanical pan/tilt which is relatively slow and difficult to control
optimally. However, the software pan/tilt requires duplicated sensor hardware.

Our experiments have demonstrated the basic operation of the driving pipeline and dynamic
adjustment of the execution interval, vehicle speed, and aim of the sensor. We have shown that the
speed of the vehicle must be reduced and the driving unit shortened in situations involving uncertainty in
the map or large vehicle control error (e.g., driving in intersections). Likewise, we have shown that the
vehicle can drive quickly using large driving units on well-mapped straightaways. At both extremes and
across the range we have demonstrated how the scanning distance can be adjusted to maximize
parallelism.
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Section V

Conclusions

Evolution of the NAVLAB Vehicle
The NAVLAB vehicle has been a successful platform for mobile robot research, logging over 900 hours

of experimental time. At this point, we are pushing up against the various physical limitations of the
vehicle: electrical power, air conditioning, internal volume, and weight capacity. This limits the total
computational power of the NAVLAB and its suite of sensors. Thus, future improvements must optimize
the quality and use of these resourres rather than simply adding on more and more equipment.

We have also found in this research that the lov- level vehicle control must incorporate many different

subsystems, each of which may implement a simple control scheme, rather than doing everything in a
single computational loop. For example, we needed to build an analog conLrol system to provide constant
engine speed, so that power would not fall off during uphill runs. This would have r,.! n very difficult to
implement by adding more code to centralized controller software.

In addition, therp is a constant demand for more and more powerful sensors and control systems. The
reason is that the robot has certain needs, -ch as knowing its position and the 3D description of the
environment. These needs can either be met by adding appropriate complex hardware, or by clever

"w re with simple hardware. The software is sometimes theoretically possible to write, but developing
it is major research in itself, and it may or may not work. Therefore, for actually building a vehicle, the
best solution is almost always to buy the best available hardware. This means a very large capital outlay
is needed to obtain the equipment necessary to sustain the most productive research. Otherwise, the
researcners spend all their time trying to compensate for the poor quality equipment. In the NAVLAB, this
shows up most clearly in the need for a high-quality GPS and INS for vehicle position determination, and
the need for the WARP and other massive computational power.

Evolution of the CODGER Blackboard

The CODGER blackboard system has reached a certain level of maturity in its current form, CODGER
II CODGER II includes many facilities for map data representation, map revision, and vehicle position
estimation, that distinguish it qualitatively from other mobile robot systems. Although not all of the
uncertainty-modeling facilities have yet been implemented, the system has already proven to be very
useful in simple map-updating experiments. Such experiments are among the most challenging mobile
robot tasks, because they require perception of an unknown environment as well as integration of
information with existing map data.

To accomplish this, the CODGER system centralizes the task of managing geometric and other map
data. This is an example of the "database" approach in which each module talks to a central database of
map information, as opposed to the "message-passir j" approach in which each pair of communicating
modules do so as needed. The database approach is more powerful than the message-passing
approach because it allows anonymous storing and fetching of data; thus, it is more conducive to
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supporting robot development research. CODGER uses this central database to implement centralized
facilities for storing and retrieving geometric data.

The data representation facilities of CODGER include primitive geometric objects, organized into a
complete 2D geometric modeling network with local coordinate systems, and time-varying transformatic..
among the objects. We have developed the concepts of frame generators and affixment groups as ways
to manage the complexity and ambiguity of representing time-varying relationships. With this battery of
tools, the NAVLAB uses CODGER to implement real performance of map updating missions.

Experiments With the Driving Pipeline

The Driving Pipeline is a driving control scheme to control a robot vehicle maneuvering in the physical
world. By organizing and managing the primitive processing steps, the Driving Pipeline provides the

following capabilities:

" Continuous Vehicle Motion: The Driving Pipeline drives the vehicle continuously by
adjusting the vehicle speed and executing the Vehicle Control step in parallel with other
processing steps.

" Parallel Execution: The Driving Pipeline executes the primitive processing steps in parallel
and maintains a high degree of parallelism. Thanks to the pipelined execution, the Driving
Pipeline achieves the highest possible vehicle speed.

* Adaptive Control: The Driving Pipeline is capable of adapting sensor aiming, vehicle
speed, and execution intervals to the driving conditions.

These capabilities o' the Driving Pipeline are made possible by the two key ideas of the Driving
Pipeline, the driving unit and the pipelined execution of the processing steps. By using driving units, the
data to be processed is divided into a sequence of driving units that can be processed separately by the
processing steps. The steps themselves are designed to work in a fixed order on each driving init.
Because of the pipelined execution, the computation for these processing steps can be overlapped on
successive driving units. These pipelines in both the processing steps and the data enab., the pipelined
execution, giving rise to parallel computation and continuous vehicle motion. The driving units also
enable adaptive control. By adjusting the location, size, and interval of each driving unit, the Drivin.i
Pipeline adapts the processing to the driving situation. The pipeline execution thus enables the adaptive
control in the continuous vehide motion.

The Driving Pipeline clearly describes the driving control scheme in four aspects: primitive processing
steps, organization of these processing steps, execution scheduling, and control parameters. In the case
of stop-and-go motion, the last thee aspects of the driving control scheme are implicit and do not need to
be well defined. However, to achieve our goals -- continuous motion, parallel execution, and adaptive
control -- we have developed the Driving Pipeline based on an explicit understanding of all of these
aspects. This is why the Driving Pipeline is capable of controlling both geometry, such as the sensor view
frames, and time, such as execution timing. Adjusting the vehicle speeds demonstrates these capabilities

of the Driving Pipeline.

Although the Driving Pipeline supports continuous vehicle ,notion, the primitive processing steps
involved in the Driving Pipeline employ only static algorithms. The Perception step, for example, analyzes

the sensor data withe':t taking into account the vehicle motion. Similarly, the Local Path Planning step
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determines the trajectory path plan as if the vehicle were not moving while the Local Path Planning step is
processing. By introducing the driving units, the Driving Pipeline converts dynamic problems into a set of
static problems for each driving unit. By employing the pipelined execution, the Driving Pipeline overlaps
the static processing steps to perform dynamic vehicle motion. This feature of the Driving Pipeline gives
two advantages. First, the Driving Pipeline makes it easier to build mobile robot systems by integrating
relatively well developed processing algorithms for perception and path plarning. Second, the Driving
Pipeline provides a test bed for studying these primitive algorithms using real mobile robot systems.

Future research will center on expanding the concept of the driving unit and pipelined execution to
:z:omodate m ecensors, :wcrtainty in the map database, and off-road travel. Multiple sensors with

different view frame sizes introduce additional synchronization points into the pipeline, thus affecting the
execution flow. Uncertainty about the positions of objects in the map affects the aiming of the sensors
and vehicle speed. For example, in the presence of little uncertainty, the vehicle can look far ahead and
drive quickly. Off-road travel provides a new set of Prediction, Perception, and Planning steps to be
incorporated with on-road travel in a single pipeline to permit multiple modes of navigation. Algorithms
are needed to dynamically determine the parameters of the pipeline in these scenarios while maximizing

parallelism.

Technology Transfer From This Research

The NAVLAB has a fairly unique status as a robot vehicle whose architecture is suited for research in
both integrated robot systems and invidual component technologies (path planning, map navigation, and
perception). Thus, the NAVLAB fills an important role in the research community as a focal point for
technology transfer operations.

One level of technology transfer involving the NAVLAB has been the exchange of software and
concepts for perception and planning. In 1987, researchers from the University of Massachusetts
obtained data from the NAVLAB for use in their visual motion research under DARPA's SCVision
;:ogram. They sent CMU their code, which was evaluated at CMU in terms of its suitability for tasks such
as visual navigation for the NAVLAB. Additionally, Hughes Corp. developed an x-y-e path planner, which
appears to be very valuable for mobile robot navigation. CMU is no,- undertaking to improve and
enhance this path planner by incorporating vehicle kinematics models, uncertainty modeling, and
computational speedups. The resulting module promises to be a key ingredient in future versions of the
NAVLAB software system.

In addition, the NAVLAR hardware and software developed under this contract has been exported to
other sites or used as the basis fc, research in other robot vehicles. The CODGER blackboard database
has been sent to Martin-Marietta, where it has controlled the ALV, and to other ALV contractors including
ADS and FMC. It has also been sent to several non-DARPA sites, including NASA-Goddard, DEC, and
Florida Atlantic University (for use in underwater robot design). On the low-level side of the system, the
controller has been adapted for building the Locomction Emulator (LE), a platform for the emulation and
study of various schemes for wheeled robot locomotion. The LE controller consists of two Intel 80286
processor boards that run code developed for the NAVLAB; the user interface code was expanded to be
more user-friendly since the LE's application involves more human interaction than the NAVLAB. The
development of the LE controller occurred at the same time that the NAVLAB was switching from Galil
motion control boards to the newer Creonics boards. The LE was used for development and testing of
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the new Creonics device driver, to reduce the downtime of the NAVLAB vehicle.

The NAVLAB controller architecture, along with much of the perception software, will be the basis for

corresponding components of the Mars Rover being developed at CMU under NASA sponsorship. As in

the NAVLAB, a multitasking, priority-based real-time operating system is used to implement

asynchronous I/O and coordination of robot motions. The Creonics motion control cards, found to be very

effective for the NAVLAB vehicle, are now being adapted for the Mars Rover. In addition, the path

planning and terrain perception capabilites of the NAVLAB are being used as the basis for the Mars

..a,,. software In addition, the FASTNAV project unoer sponsorship from Caterpiiiar Corp. used tne

NAVLAB as the basis for studying high-speed autonomous traversal of known roadways.

Future Directions

We have identified several problems and issues as :ikely directions for our research in the next year:

" We need to develop a new generation of the Io,-level controller system that provides a
high-performance UNIX-like environment.

" The vehicle path tracking is not as predictable as we would like. We have begun to develop
a new path tracking method based on continuous replanning of qtuntic arcs to provide more
precise vehicle control.

" We will continue development of the x-y 8 path planner based on the Hughes path planner,
and aad to it uncertainty 7anagement a, d representation.

" The Driving Pipeline concept has been very serviceable, but it has some key limitations. In
particular, the need for all subsystems to operate in a pipeline means that computational and
stinsing resources are not operated at maximum efficiency. The new path planner may
provide a good alternative scheduling mechanism for perception and oiher activities.
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Appendix I

Experimentation Issues for Mobile Robot Systems
The following document is incorporated into the annual report. It chronicles the role that the research

under this contract has played in aiding DARPA's formulation of a research agenda in mobile robots and
real-world machine pe;:eption.

A workshop was held in Vail, Colorado, in April 1988, for the purpose of planning the ongoing research
in the ALV (Autonomous Land Vehicle) and SCVislon (Strategic Computing Vision) programs. One of the
key issues addresed at this workshop was how the basic research community might benefit from the

continued availability of working, integrated robot systems such as the ALV, and what are the limitations
of such integrated systems for supporting basic research. The Pis on this (NAVLAB) contract made a
presentation to outline a number of possible research paradigms, and also to indicate what we have
learned from the NAVLAB about the limitations of using an integrated system to support basic research.

After the workshop, we were asked by DARPA to prepare a document to summarize these issues. The
following is that document. It has been used by DARPA internally and in conjunction with other research
contractors in the ALV/SCVision comm,nity, as an aid to identifying the best strategies for continued
research in this area.

Although the document refers specifically to the ALV at Martin-Marietta, the broad issues apply
generally to big-system robotics research and may therefore be of interest to all readers. For that reason,
we include the document in this annual report.
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EXPERIMENTATION ON THE ALV:
TEMPLATES FOR EXPERIMENTS IN 1988 AND BEYOND

by Steve Shafer, CMU
18 April 1988

Submitted to DARPA and the ALV Experiment Steering Group.

Abstract

At this point in the ALV and SCVision programs, there exists a highly capable and instrumented vehicle
and accompanying software system at Martin-Marietta, along with an engineering and development staff.
At the same time, a number of the Technology Development Contractors (TDCs) in these programs have
developed research paradigms and software with varying degrees of maturity. To further the
development of research in vision and navigation, plans are now needed for interaction to provide the
TDCs with the data and system facilities they need from the ALV to promote basic research, while at the
same time providing Martin-Marietta with access to the most mature software to add to the repertoire of
the ALV system.

Two relevant facts have become clear through the research to date: First, the notion of building a
single "integrated" system by somehow applying Super-Glue to all the component technology research is
neither practical nor desirable at the present time; and Second, the disparate properties of the various
technology research efforts demand many different plans for interaction with Martin-Marietta.

This document preseiits a brief discussion of the nature of system integration and how it differs from
experimentation. At present, it is experimentation rather than integration that will serve as the best model
for joint effort between Martin-Marietta and the TDCs. A number of possible modes of experimentation

will then be outlined that may be suitable for various types of technology research with varying degrees of
maturity. It is hoped that this outline will form a basis for closer cooperation and joint activity between the
Technology Development Contractors and Martin-Marietta in the near future.
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INTEGRATION AND EXPERIMENTATION

It is tempting to believe that perhaps the ALV software system comprises a framework into which
component research results can be inserted, like electrical plugs into sockets, forming a harmonious
working system with interchangeable parts.

Unfortunately, the state of robotics research is not sufficitntly advanced to support this model. In order
:o create working mobile robot systems, typically numeious software modules must be made to work

together in harmony, each consisting of tens of thousands of lines of code, and each performing a highly
complex function. We attempt to define the interfaces between these modules as specifically as we can,
but these descriptions fall far short of being complete characterizations of such complex software. The
most obvious aspects of a module that we typically describe as interface specifications include some
abstract task description and perhaps the programming conventions for communication with the other

modules: yet equally imoortant are the programming language and operating system assumptions made
by the module, the amount of time it is allocated for execution, the amount and nature of the vehicle
motion oetween successive invocations, the nature of the sensors, the resolution of the input and output
data, the nature of the test data used to develop the module, et cetera, et cetera, et cetera!

All these factors must be compatible with the other modules In the system In order for the
Integrated system to succeed.

Suppose for a moment that we desire to create a high-performance integrated system using pieces
from more than one development site. Not only must these factors be described in detail in the interface

specifcations, but each contractor must build this complex research software in conformance with these
elaborate descriptions. This would not be a recipe for successful research -- it would be a demanding
development effort suitable only for mature software -- the antithesis of creative and wide-ranging
research.

To develop integrated systems at the current state of the art demands an extraordinarily high

bandwidth of communication among the module developers over an extended period of time, so that each
module can be conceived and matured within a shared model of the context for execution of every

module in the system. For this reason, multi-site integration has not been the methodology utilized by the

successful system-building efforts at Martin-Marietta, CMU, Hughes, and other ALV/SCVision sites.
Rather than that, these sites have relied on a methodology of intensive in-house system development,

with the smallest possible bandwidth of interface to software developed elsewhere. This has been a
successful approach so far, and should continue to be so in the future.

However, this model does little to contribute to the development of component technology research,
wh;ch ,s essential for us to push the state-of-the-art most rapidly. For this research, it is not reasonable to

demand that preliminary conceptual development should produce polished "modules" that will instantly fit
into someone else's highly evolved system. A more appropriate view is that the existing ALV system can

contribute in various ways to the maturation of the concepts and software being developed at the various
sites. This can take place through a number of forms of experimentation that take forms other than the

integrated system model described above.

This document briefly sets forth descriptions of a number of possible templates of expenmentation that

appear to be promising models for productive collaboration between Martin-Mariett3 and the Technology
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Development Contractors to promote research in both Systems ana component technrologies for
navigation and vision

EXPERIMENTATION TEMPLATE FOR SYSTEM DEVELOPMENT RESEARCH

To date several systems have been developed for outdoor navigation of sophisticated vehicles within

t:e ALV and SCVision programs. These systems have all had several features in common:

o a perception subsystem

* a planning subsystem

@ a virtual vehicle to follow elementary path descriptions

* a software framework to bind together these elements
In some cases, all of these elements have been developed at a single site, such as Martin-Marietta or
CMU Such efforts have been quite successful, but fall outside the scope of this document.

There have also been successful experiments involving ALV support for other contractors' system

development efforts, and these establish a template for future efforts as follows:

TEMPLATE A: VIRTUAL VEHICLE SUPPORT FOR SYSTEMS EXPERIMENTS

Description: When a contractor has developed a complete system, there may be many reasons
for testing it on the ALV:

" To perform live testing when the developer does not posess a vehicle.

" To test the system in conditions not available at the development site.

" To take advantage of hardware, software, or expertise not available at
the development site.

* To test the system in a standardized scenaric for comparative purposes.
In this case, the usual desire is to preserve the iOtegrity )f the system as much as
possible, using only the smallest bandwidth interface to the ALV. This involves using
the hardware and Virtual Vehicle of the ALV, with all of the other software elements
being provided as part of the imported system.

Suitability: This model of experimentation is appropriate for a complete system developed
outside of Martin-Marietta, which runs in real-time on hardware and operating
systems available at the ALV site.

TDC Preparation: Preparation by the the TDC includes ensuring that the system conforms to the
interface requirements of the ALV virtual vehicle, and ensuring that the system will
run with the sensors, computing hardware, and system software at Martin-Marietta.

M-M Preparation: Martin-Marietta is responsible for the vehicle and sensor hardware, the virtual vehicle,
and the basic computing hardware and system software.

One result of each experiment in this model is the potential for Martin-Marietta to accumulate these

complete working systems as tools to support the other experiments described below. Of course, Martin-

Marietta cannot be expected to provide substantial manpower for the maintenance of such systems over

time

Like all experiments involving the ALV, the TOG must expect to send one or more people to Martin-
Marietta for some period of time to accomplish the experiment. Because of the intensive resource and

personnel requirements on the part of both Martn-Marietta and the TDC, it may be appropriate for
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concrete planning to be undertaken well in advance of the experiment and for DARPA to provide explicit
funds for undertaking the experiment. Joint research proposals to DARPA appear to be a good
mechanism for achieving both of these goals.

EXPERIMENTATION TEMPLATES FOR COMPONENT
TECHNOLOGY RESEARCH

The previous model is aimed at systems experiments, but does not address the role of the ALV in

supporting basic research. There has been some concern on DARPA's part that perhaps the ALV is not
a useful tool for promoting basic navigation and vision research, but this appears to be groundless. The
lack of support in the past can be attributed to the startup and system-building effort at Martin-Marietta,
and the progressive maturation of the technology development efforts throughout this period. At present,
there appears to be a clamor for access to the ALV on the part of the TDCs, because of the richness of
tme data and the system context it can provide.

Each module or algorithm being investigated as a component technology needs to undergo a
potentially lengthy process of maturation in terms of quality of results, robustness, speed of execution,
and mating to the ALV system, before it can be fully integrated as a module in the system. At each stage
of evolution, a somewhat different type of experiment with the ALV may be appropriate. Accordingly,

several models of experimentation are outlined here, in order of increasing evolution of the module. It is
not suggested that every module utilize all of these types of experimentation, nor that this list is

exhaustive; this is simply a menu of several options that currently appear to be of general interest. Some

of these have already been performed in the past, or are currently in progress.

TEMPLATE B: GENERIC DATA COLLECTION - THE SIMPLEST CASE

Description: The simplest use of the ALV to support basic researchers is in generic data
collection. This involves the use of the hardware and sensors of the ALV, along with
calibration and/or ground truth data. The input is a specification of the data needed,
which must conform fairly closely with the capabilities of the ALV system itself. The
output is the data set and accompanying descriptive data.

Suitability: This mode of operation is suitable for modules in early stages of development, with
little or no compatibility with the ALV system.

TDC Preparation: The TDC must provide a complete specification of the data to be collected. In
addition, the TDC should expect to send someone to Martin-Marietta to participate in
the data collection process.

M-M Preparation: Control of the hardware and software, and provision of the accompnying data.

TEMPLATE C: CUSTOMIZED DATA COLLECTION WITH DIRECT VEHICLE CONTROL

Description: There are some reasons why generic data collection may not be adequate for a
particular basic research effort:

" need for unconventional sensors or configurations

" need for data collection patterns not compatible with normal ALV
operation

In these cases, a more appropriate form of experiment would be for the TDC to
mount the desired sensors (if other than the usual ALV sensors) on the vehicle, and
to perform data collection while directly providing instructions to the virtual vehicle to
cause the ALV to move in the desired way. In this case, the ALV is being utilized
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simply as a platform for moving sensors outdoors, along with the accompanying data
recording equipment and instrumentation.

Suitability: This mode of experiment is also suitable for modules that are not particularly
compatible with the current ALV system, and would provide much more detailed
control over the data collection than Type B experiments.

TDC Preparation: The TDC must ensure that the necessary sensors will be available to the ALV, and
must prepare software to give the desired commands to the virtual vehicle of the ALV
software (unless manual control is to be used).

M-M Preparation: Martin-Marietta must ensure that the virtual vehicle is working and may need to
provide a nicer interface for the TDC to utilize. It may be desirable. for example, to
provide a small repertoire of LISP functions that the TDC software can call to cause
the vehicle to move in simple ways. In addition, Martin-Marietta must ensure that the
TDC will have software access to the sensors and the data recording media for the
experiment. If the sensors include controls such as pan/tilt, zoom, or focus, some
hardware and software interface must also be provided.

TEMPLATE D: CUSTOMIZED DATA COLLECTION WITH THE ALV SYSTEM

Description: A variation of the above plan is to perform data collection while the ALV moves along
the path it would normally follow (such as a roadway), but using unconventional
sensors or movement increments. In this case, the TDC needs to meet all the
requirements above, but the intention is to utilize the entire ALV system to move the
vehicle to successive data collection points, rather than interfacing directly to the
virtual vehicle. It is also possible that the experimenter will need access to some
internal data from the ALV such as the vehicle attitude.

Suitability: This is better suited than Type C experiments when it is important for the vehicle to
travel as it will in an actual demonstration run. For example, this may be desirable for
an object recognition module looking at an object at the side of the road as the ALV
travels along the road -- in this case, the TDC does not desire to control the vehicle
path, but may need to control the distance of travel between image collection points.
The vehicle path must be controlled by the ALV system, which must therefore utilize
all the normal perception and planning elements of the full ALV system.

TDC Preparation: Similar to Type C. In addition, if internal ALV system data is needed, the TDC will
need to utilize the software provided by Martin-Marietta to make it available.

M-M Preparation: Supporting a Type D experiment requires a substantially more sophisticated interface
to the ALV system than the Type C model above. The mode of operation would still
be essentially stop-and-go, but the full ALV system will be running essentially in
parallel with the TDC software. Again, Martin-Marietta will probably need to provide a
smail repertoire of commands to be used by the TDC software to invoke vehicle
motion; however, only the distance of motion would be adjustable by the TDC. If the
module needs internal data from the ALV system, Martin-Marietta will have to provide
a software mechanism to make it available.

TEMPLATE E: OPEN-LOOP PIGGY-BACK EXPERIMENTATION

Description: The data collection models presented above should allow for much more flexible and
sophisticated data collection than has occurred in the past. However, the amount of
data that can be pragmatically collected and transmitted to the TDC by these means
is still somewhat limited. When a module has been tested on such stored data and
has matured to the point that it runs in reasonably realistic time, it is possible to
expose the algorithm to a much larger amount of data by actually running it in a
"piggy-back" mode, in parallel with the ALV system but only loosely connected to the
basic ALV software. This can be viewed as an extension or evolution of the Type D
data collection experiment; but rather than store the data at each point, the data
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would be actually run through the experimental module on-line. The output of the
module could be stored for later analysis, or could be displayed for direct on-line
evaluation, debugging, and error analysis. This can put the researchers into fairly
intimate contact with the performance of their algorithm under real operating
conditions. In fact, if the output is fairly closely related to some internally generated
data of the ALV system, Martin-Marietta might provide a way for the TDC software to
get a copy of the internal data for comparison purposes. In this case, a direct
comparison can take place on-line - though the ALV will, of course, be actually
controlled by its own internal data rather than by the potentially flaky results of the
experimental module. If the module is really running at real-time speeds, ten the
ALV might be able to undertake continuous motion while running the piggy-backed
experimental module in parallel.

Suitability: Before a module can realistically be run in this mode, it must be tested on real,
canned ALV data, producing reasonably good results, and it must run in a reasonable
amount of time. Processing time per frame of sensor or path data ought not to
exceed, say, several minutes or perhaps a fraction of an hour; otherwise, the motion
of the vehicle will be only a few frames per hour, which can be taxing on the ALV
vision system due to environmental changes, and would be in any case a colossally
inefficient waste of research time and money. In the best case, processing time per
frame ought to be between a few seconds and a minute. Of course, this might
require considerable engineering of the module such as recoding for the WARP or
Connection Machine. However, if the module is promising under Type D
experimentation, then there is a strong motivation to do the necessary enginering to
take it to the stage of this Type E on-line testing.

TDC Preparation: The TDC must be willing to prepare the module to meet the criteria above, and to
integrate the vehicle control commands into the module to allow it to be run in
ci'njunctinn with the ALV so-'&are. If special sensors are needed, these must of
course be provided and configured by the TDC.

M-M Preparation: Similar to the Type D scenario, in the simplest case. If the vehicle is to run in
continuous motion, or if the TDC needs access to internal data from the vehicle to
compare with its output, then more work will be required by Martin-Marietta.

TEMPLATE F: CLOSED-LOOP PIGGY-BACK EXPERIMENTATION (Module Replacement)

Description: The Type E "open-loop" model provides for ALV input to the experimental module,
but the output of the module is not fed back into the ALV system. That model is
therefore useful for early on-line testing. Once a module has been run successfully in
that mode, if the output is useful to the ALV system, then it may be desirable to hook
up the output to feed back into the ALV system. In this way, a functional replacement
can be made for a part of the ALV software, or a new source of information can be
made available to it. This allows on-line testing of the module as a system
component, which is a qualitatively different concern than the previous experimental
models that test the module as an entity on its own. At this stage, Martin-Marietta
may decide to incorporate the module into its baseline ALV system. This constitutes
technology transfer of actual code, which can be seen as an evolutionary step that
must follow a substantial preliminary process of module development and testing as
outlined in the previous templates.

Suitability: Only a mature module, running in realistic time on the ALV and known to provide
high-quality output in a form compatible with the ALV system, is a suitable candidate
for this mode of experimentation.

TDC Preparation: Successful Type E experimentation is probably a pre-requisite for closed-loop testing.
In addition, the instigator of the experiment (the TDC or Martin-Marietta) must be
prepared to modify the module to produce its output in a form suitable for direct
utilization by the ALV system.
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M-M Preparation: The ALV system itself must be modified to accept the data produced by the module.

PROGNOSIS FOR RESEARCH PROGRESS USING THE ALV

At the present time, there appears to be a substantial demand on the part of the technology and

systems researchers to have access to the ALV as a data collection platform, experimental system

context, and virtual vehicle. While the interactions between Martin-Marietta and the technology

development sites have been limited in the past, the current degree of maturity of the various efforts is

creating an increasing need for data that can only be provided by the ALV or by prohibitively elaborate

laboratory facilities. Hopefully, this document will promote future interactions by providing some common

mcdels of expermcntation between Martin-Marietta and the various Technology Development

Contractors.



58

PUBLICATIONS

Selected publications by members of our research group, supported by or directly related to this
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2. The Driving Pipeline: A Driving Control Scheme for Mobile Robots. Goto, Y., Shafer, S.A.,
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3. Perception for Rugged Terrain. Kweon, I., Hebert, M., and Kanade, T. Presented at SPIE
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